Consecutive primes in tuples

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primes in tuples I

We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the Elliott-Halberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. Even a much weaker conjecture implies that there are infinitely often primes a bounded distance ap...

متن کامل

Diophantine m-tuples for primes

In this paper, we show that if p is a prime and ifA = {a1, a2, . . . , am} is a set of positive integers with the property that aiaj +p is a perfect square for all 1 ≤ i < j ≤ m, then m < 3 · 2168. More generally, when p is replaced by a squarefree integer n, the inequality m ≤ f(ω(n)) holds with some function f , where ω(n) is the number of prime divisors of n. We also give upper bounds for m ...

متن کامل

Seven consecutive primes in arithmetic progression

It is conjectured that there exist arbitrarily long sequences of consecutive primes in arithmetic progression. In 1967, the first such sequence of 6 consecutive primes in arithmetic progression was found. Searching for 7 consecutive primes in arithmetic progression is difficult because it is necessary that a prescribed set of at least 1254 numbers between the first and last prime all be composi...

متن کامل

Strings of Consecutive Primes in Function Fields

In a recent paper, Thorne [5] proved the existence of arbitrarily long strings of consecutive primes in arithmetic progressions in the polynomial ring Fq[t]. Here we extend this result to show that given any k there exists a string of k consecutive primes of degree D in arithmetic progression for all sufficiently large D.

متن کامل

Ten consecutive primes in arithmetic progression

In 1967 the first set of 6 consecutive primes in arithmetic progression was found. In 1995 the first set of 7 consecutive primes in arithmetic progression was found. Between November, 1997 and March, 1998, we succeeded in finding sets of 8, 9 and 10 consecutive primes in arithmetic progression. This was made possible because of the increase in computer capability and availability, and the abili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2015

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa167-3-4